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INTRODUCTION 

Generalized linear models (GLMs) (McCullagh and Nelder1989) 

are a standard method used to fit regression models for univariate 

data that are presumed to follow an exponential family distribution. 

Frequently researchers are interested in analyzing data that arise 

from a longitudinal, repeated measures or clustered design , and 

there exists correlation between observations on a given subject. If 

the outcomes are approximately multivariate normal, then there 

well established methods of analysis (Laird and Ware 1982). But if 

the outcomes are binary or counts, general likelihood based 

approaches are less tractable. For clustered binary outcomes, 

several approaches have been suggested (e.g., Fitzmaurice and 

Laird 1993 ) .  Generalized estimating equations (GEEs) were 

developed to extend the GLM  to accommodate correlated data, 

and are widely used by researchers in a number of fields. In this 

paper we will fit GEE model using statistical package SAS 

BRIEF REVIEW OF GLM’S AND GEE’S 

   McCullagh and Nelder (1989) introduced the GLM for the 

exponential family data with the form 
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where ix
 is a 1p  vector of covariates for the 

thi  and   is a 1p  

vector of regression parameters.  One of the attractive properties of 

the GLM is that it allows for linear as well as nonlinear models 

under a single framework . 

 

 

 It is possible to fit models where the underlying data are normal, 

inverse Guassian, gamma, Poisson, binomial , geometric and 

negative binomial by suitable choice of the link function (.)g   

(Hilbe, 1994).   

    Liang and Zeger (1986) and Zeger and Liang(1986) introduced 

generalized estimating equations (GEEs) to account for the 

correlation between observations in generalized linear regression 

models. One aspect of their approach builds upon previous 

methods of variance estimation developed to protect against 

inappropriate assumptions about the variance (Huber 1967; White 

1980, 1982). GEE’s are used to characterize the marginal 

expectation of a set of outcomes as a function of a set of study 

variables. In a marginal model , the analyst is interested in 

modeling the marginal expectation (average response for 

observations sharing the same covariates)  as a function of 

explanatory variables. Diggle, et al. (1994) provided a detailed 

review of marginal models as well as other approaches (including 

random effects models and transition (markov) models).  

Let tjni
ij

Y ,,1,,,1,   be the thj  outcome for the 
thi  subject, 

where we assume that observations  on different subjects are 

independent, though we allow for association between outcomes 

observed on the same subject. In the GEE setting we are not 

assuming that 
ijY  is a member of the exponential family, but we are 

assuming that the mean and variance are characterized as in the 

GLM.  
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We assumed the marginal regression model  

   ijij
YE xg                                          (1) 

where ijx
 is a 1p  vector of study variables (covariates) for the 

thi  

subject at the  
thj

 outcome,   consists of the p regression 

parameters of interest and (.)g  is the link function. Common choices 

for the link function might be aag )(  for measured data (the identity 

link) )log()( aag   for count data (log link) or  
a

a
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data (logit link). Since likelihood methods for binary do not 

commonly exist in general purpose statistical software, GEE’s have 

been popular approach to regression model fitting for this type of 

data. For binary data with the logit link, we have that 
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since the outcomes are binary, we have that  
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In addition to this marginal mean  model, we need to model the 

covariance structure of the correlated observations on a given subject. 

Assuming no missing data, the tt  covariance matrix of ij
Y is 

modeled as .2
1

)(2
1

i
AR
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A  is diagonal matrix of variance 

function )(
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uV  and )(R  is the working correlation matrix of 
i

Y  

indexed by a vector of parameters  . We will now describe 

specifications for R. 

Specification of working    correlation matrix 

   There are a variety of common structures that may be appropriate to 

use to model the working correlation matrix. Table 1 displays a 

number of such matrices. Issues guiding the choice of correlation 

structures are beyond the scope of this paper (see Diggle et al. 1994 

for a readable discussion), but in general if the number of 

observations per cluster is small in a balanced and complete design, 

then an unstructured matrix is recommended. For datasets with 

mistimed measurements, it may be reasonable to consider a model 

where the correlation is a function of the time between observations  

 

(i.e., M-dependent or auto-regressive). For datasets with clustered 

observations, there may be no logical ordering for observations 

within a cluster and an exchangeable structure may be most 

appropriate. Comparisons of estimates and standard errors from 

several different correlation structures may indicate sensitivity to 

misspecification of the variance structure. For both the independence 

working structure and the fixed working structure, no estimation of 

  is performed. We note that use of the exchangeable (also referred 

to as compound symmetry) working correlation matrix with 

measured data and identity link function is equivalent to a random 

effects model with a random intercept per cluster. Fixed working 

correlation in Fig.1 is symmetric with 1’s on the diagonal, specifies a 

banded structure with a fixed correlation and linear decline as the 

distance between observation increases. 
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Fig.1 Example of Fixed Working Correlation Matrix 

Empirical and model based variance estimators 

   Zeger and Liang(1986) referred to 
ij

V as a “working ” matrix 

because it is not required to be correctly specified for the parameter 

estimates in model (1) to be consistent (as long as the mean model 

itself is correct and there is no missing data). However, Liang and 

Zeger (1986) showed  that there can be important gains in efficiency 

realized by correctly specifying the working correlation matrix.  

    A set of estimating equations are solved (through an iterative 

process) to find the value of the estimator ̂  . An empirical  variance 

estimator can be used to estimate )ˆvar(  . This variance estimator is 

also referred to as a “sandwich” or “robust” estimator. Another 

variance estimate available from GEE models is the model-based (or 

“naive”) estimate, which is consistent when both the mean model and 

the covariance model are correctly specified.  
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Table 1. Fixed Working Correlation 

Common Working Correlation Models 
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Since in general the analyst will not know the correct covariance 

structure, the empirical variance estimate will be preferred when the 

number of cluster is large. When the number of clusters is small, say 

< 20, the model based variance estimator may have better properties 

(Prentice 1988) even if the “working variance” is wrong. This is 

because the robust variance estimator is asymptotically unbiased , but 

could be highly biased when the number of clusters is small.  

APPLICATION 

   Longitudinal or clustered studies often have missing data, either by 

design or happenstance. If a litter in a teratology study is the level  of 

clustering, litter size may vary between litters. Patients in an 

observational study may miss appointments or drop out of the study. 

The protocol for a clinical trial may call for patients to be observed at 

specified intervals, but their actual observations may take place at 

varying times. Such unbalanced and/or incomplete data can 

complicate GEE analyses. If the missingness can be thought of as 

being missing completely at random (MCAR) in the sense of Little 

and Rubin(1987), then the consistency results established by Liang 

and Zeger (1986) hold. However, the notation and calculations for 

arbitrary missing data patterns are more complicated than in the 

balanced and complete case. Robins et al (1995) proposed methods to 

allow for data that is missing at random (MAR). Their inverse 

probability censoring weight (IPCW) approach requires that the 

missingness law be modeled and that weights corresponding to the 

inverse probability of missingness be included in the GEE. This will 

yield consistent parameter estimates, but the variance will tend to be 

incorrect (since the weights are being estimated but are treated as 

constants by default) . Unfortunately, the method of Robins et al 

(1995) only works well when there is dropout-that is, once a subject 

misses a time, that subject is not seen again. Often subjects miss a 

single observation, and then are seen at the net time. The probability 

of missingness pattern over time is not estimable with a simple 

logistic regression in this case, so the Robins et al (1995) method is 

more difficult to implement. Laird proposed a modification to the 

GEE  approach that combines restricted maximum likelihood 

(REML) estimating equations for the parameters in the variance-

covariance matrix.The variable CARRY takes the value N(no) if the 

observation is from the first period, it takes the value A or B if it 

comes from the second period and the treatment in the first periods A 

or B, respectively.  

     If the subject received the placebo in the  first period, the value of 

CARRY is also set to N for the observations in the second period. 

The following PROC GENMOD statement fit the GEE model. Since 

there are 300 subjects in the crossover study there are 300 clusters or 

experimental units in the GEE  analysis. With responses for both 

periods, the cluster size is two. There are no missing values, so both 

the minimum and maximum cluster size two. A logistic regression 

analysis is appropriate for these data so DIST=BIN is specified in the 

MODEL statement. The logit  link is used by default. Both 

SUBJECT and AGE are specified in the CLASS statement, since 

AGE reflects a classification into groups. The model includes  main 

effects  for period, age, drug and carryover effects and interactions 

for period and age and drug and age. The option TYPE=UNSTR 

specifies the unsaturated correlation structure. Since there are only 

two measurements per subject, this is the same as exchangeable 

structure.  

 

RESULTS 

   From Table 2, since there are 300 subjects  in the crossover study,  

there  are 300 clusters or experimental units in the GEE analysis.  

With responses for both periods,  the cluster size is two.  There are no 

missing values,  so both the minimum and maximum cluster size is 

two.  Tables 3 and 4 showed that the  score statistic  for the two – 

level carry variable is 1.15 with  p - value  equal to 0.5626.  In 

addition, the age   drug  interaction appears to be unimportant,  with 

a score  chi – square statistic of 0.72 for 2 df  (p = 0.6981) see Table 

7.  The joint test  is definitely nonsignificant,  with  a chi – square 

value  of 1.31 for 4 df  and a  p – value 0.8595.  The Typ3  tests 

indicate that period, age and drug are highly significant with a p – 

value of 0.0240, the period age interaction cannot be dismissed.  

The unstructured correlation structure is the same as the 

exchangeable correlation structure when you have two responses per 

cluster.  The correlation is estimated to be 0.1959.  Next  test for  

differences whether two parameters for drugs A and B is equal to 

zero was carried out.  The  single degree of freedom test and the chi – 

square value of 19.15 for the score test is highly significant (see 

Table1)
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                    Table 2. Working correlation matrix 

Obs age sequence time1 time2 i subject period drug carry response 

1    older        AB      F      F 1          1        1 A      N         F 

2   older       AB      F     F 1          1        0 B     A        F 

3  older      AB     F    F 2          2        1 A    N       F 

4  older      AB     F    F 2          2        0 B    A       F 

5  older     AB     F   F 3          3        1  A    N       F 

6  older     AB    F   F 3          3       0 B    A      F 

7  older     AB    F  F 4          4       1 A    N      F 

8  older     AB    F F 4         4      0 B    A      F 

9  older    AB    F F 5         5       1 A    N      F 

10  older    AB    F F 5         5       0 B    A     F  

11  older    AB    F F 6         6       1 A    N     F 

12  older   AB   F F 6         6       0 B    A    F 

13  older   AB   F F 7         7       1 A    N    F 

14  older   AB   F F 7         7       0 B    A    F 

15  older    AB   F F 8         8       1 A    N    F 

 

.  
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 Table 3. Parameter Information 

Parameter Effect age drug carry 

Prm1 Intercept    

Prm2 period    

Prm3 age older   

Prm4 age younger   

Prm5 drug  A  

Prm6 drug  B  

Prm7 drug  P  

Prm8 period*age older   

Prm9 period*age younger   

Prm10 carry   A 

Prm11 carry   B 

Prm12 carry   N 

Prm13 age*drug older A  

Prm14 age*drug older B  

Prm15 age*drug older P  

Prm16 age*drug younger A  

Prm17 age*drug younger B  

Prm18 age*drug younger P  
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Table 4. Criteria For Assessing Goodness Of Fit 

Criterion DF Value Value/DF 

Deviance 590    730.8056 1.2387 

Scaled Deviance  590       730.8056   1.2387 

Pearson Chi-Square       590                              597.8187       1.0133 

Scaled Pearson X2       590                              597.8187       1.0133 

Log Likelihood                              -365.4028  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5. Score  Statistics  For Type 3  GEE Analysis 

Source DF                 Chi- 

                Square 

Pr>Chisq 

Period    1                                          4.61 0.0318 

age   1            36.03 < .0001 

drug 2          27.66             < .0001 

Period*age  1          4.69 0.0303 

Carry                                                         

age*drug                            

2     

2 

            1.15 

                                         0.72 

0.5626 

               0.6981 
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Table 6. Analysis Of GEE Parameter Estimates  Empirical Standard Error Estimates 

 

Parameter  Estimate Standard Error 95% Confidence Limits Z Pr > |Z| 

Intercept   0.3291 0.4115 -0.4774 1.1356 0.80 0.4239 

period   -1.1553 0.3406 -1.6424 -0.3072 -2.86 0.0042 

age older  -1.4994 0.3345 -2.2620 -0.9509 -4.80 <.0001 

drug A  1.2542 0.3623 -0.3129 1.1074 1.10 0.2729 

drug B  0.3404 0.3600 0.5001 1.9113 3.35 0.0008 

y = 0.3291 - 1.1553 period - 1.4994 older + 1.2542 A + 0. 3404 B. 

 

 

 

Table7. Contrast Results for GEE Analysis 

Contrast DF Chi-Square Pr > ChiSq Type 

carry              2           1.15            0.5626         Score 

       inter                      2           0.72            0.6981        Score 

joint           4           1.31            0.8595         Score 

 

 

Table 8. Working Correlation Matrix 

            Col1           Col2 

Row1           1.0000           0.1959 

Row2           0.1959           1.0000 
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Table 10. Contrast Results for GEE Analysis 

Contrast DF Chi-Square Pr > ChiSq Type 

A versus B          1                 19.15             < 0.0001         Score 

  

 

CONCLUSION 

The joint test is definitely nonsignificant, with a chi-square of 1.31 

for 4 df and a p – value of 0.8595 in Table 7 . The unstructured 

correlation structure is the same as exchangeable correlation structure 

when you have two responses per cluster. The correlation is  

estimated to be 0.2274. This is a single degree of freedom test and the 

chi-square value of 19.15 Table 10 for the score test is highly 

significant. The type 3 test indicates that period, age and drug are 

highly significant. With a p-value of 0.0240. Table 9, the period*age 

interaction cannot be dismiss

 BAolderperiody 3404.02542.14994.11553.13291.0 

 

 

 

 

 

 

Table 9. Score  Statistics  For Type 3  GEE Analysis 

Source DF Chi- 

Square 

Pr>Chisq 

Period 1                          24 . 98          <0.0001 

age 1                           35 . 53          < .0001 

drug  2                                                   39 . 31          < .0001 

Period*age 1                             5 . 10           0.0240 
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